Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.559
Filtrar
1.
BMC Vet Res ; 20(1): 138, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580990

RESUMO

BACKGROUND: Periodontitis is the most common oral disease in dogs, and its progression and severity are influenced by risk factors, such as age and body size. Recent studies have assessed the canine oral microbiota in relation to different stages of periodontitis and niches within the oral cavity. However, knowledge of the bacterial composition at different ages and body sizes, especially in puppies, is limited. This study aimed to characterize the oral microbiota in the healthy gingiva of small breed puppies using next-generation sequencing. Additionally, we assessed the impact of dental care practices and the presence of retained deciduous teeth on the oral microbiota. RESULTS: In this study, plaque samples were collected from the gingival margin of 20 small breed puppies (age, 6.9 ± 0.6 months). The plaque samples were subjected to next-generation sequencing targeting the V3-V4 region of the 16 S rRNA. The microbiota of the plaque samples was composed mostly of gram-negative bacteria, primarily Proteobacteria (54.12%), Bacteroidetes (28.79%), and Fusobacteria (5.11%). Moraxella sp. COT-017, Capnocytophaga cynodegmi COT-254, and Bergeyella zoohelcum COT-186 were abundant in the oral cavity of the puppies. In contrast, Neisseria animaloris were not detected. The high abundance of Pasteurellaceae suggests that this genus is characteristic of the oral microbiota in puppies. Dental care practices and the presence of retained deciduous teeth showed no effects on the oral microbiota. CONCLUSIONS: In this study, many bacterial species previously reported to be detected in the normal oral cavity of adult dogs were also detected in 6-8-month-old small breed dogs. On the other hand, some bacterial species were not detected at all, while others were detected in high abundance. These data indicate that the oral microbiota of 6-8-month-old small breed dogs is in the process of maturating in to the adult microbiota and may also have characteristics of the small dog oral microbiota.


Assuntos
Doenças do Cão , Microbiota , Periodontite , Cães , Animais , RNA Ribossômico 16S/genética , Gengiva/microbiologia , Periodontite/veterinária , Microbiota/genética , Bactérias/genética , Doenças do Cão/microbiologia
2.
Clin Lab ; 70(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345967

RESUMO

BACKGROUND: Several studies indicated that chronic periodontitis (CP) and its subgingival bacteria correlated with IgA nephropathy (IgAN). Previous research has shown that prevalence of IgAN in chronic periodontitis patients is significantly higher than that in non CP patients in Xinjiang especially in ethnic Uyghur. The aim of this study is to investigate the distribution of plaque bacterial microbes in CP and IgAN patients and to find correlation between CP and IgAN. METHODS: All of the subgingival plaque samples including 7 healthy controls (N group), 8 CP patients, 14 IgAN patients, and 14 CP with IgAN patients were obtained from ethnic Uyghur people. To investigate the distribution of plaque microbe in Uyghur CP and IgAN patients, the 16s rRNA sequencing and comparative analysis of subgingival bacteria were performed. RESULTS: There were no statistically differences in the community richness estimator (Chao) and the diversity estimator (Shannon index) among four groups. The abundance of Burkholderiales (order), Ottowia (genus) in the plaque microbes were significantly higher in CP with IgAN patients than CP patients. The abundance of Eubacterium (genus) was significantly higher in CP with IgAN patients than IgAN patients. The abundance of Veillonella (genus) was significantly higher while Streptococcus (genus), Tannerella (genus) were significantly lower in CP patients than healthy volunteers. CONCLUSIONS: The composition and abundance of subgingival plaque microbes in Uyghur CP and IgAN patients were significantly different at several levels. Which suggested that abundance of subgingival bacteria is correlated to CP and IgAN.


Assuntos
População da Ásia Central , Periodontite Crônica , Gengiva , Glomerulonefrite por IGA , Humanos , Bactérias/genética , Bactérias/isolamento & purificação , Periodontite Crônica/complicações , Periodontite Crônica/microbiologia , Glomerulonefrite por IGA/complicações , RNA Ribossômico 16S/genética , Gengiva/microbiologia
3.
Mol Oral Microbiol ; 38(4): 334-346, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347653

RESUMO

Porphyromonas gingivalis is an oral pathogen that promotes dysbiosis by quenching the bactericidal activity of the host immune system while maintaining chronic inflammation, leading to periodontitis. This involves the secretion of virulence factors such as P. gingivalis peptidyl arginine deiminase (PPAD), which converts the C-terminal Arg residues of bacterial and host-derived proteins and peptides into citrulline. We have previously shown that PPAD activity and major fimbriae (containing FimA) are necessary for P. gingivalis to activate Toll-like receptor 2 (TLR2). TLR2 is an important component of the innate immune system and plays a predominant role in the recognition of P. gingivalis by host cells. Here, we extend those findings to show that P. gingivalis strains deficient for PPAD and fimbriae induced almost identical transcriptional profiles in infected primary human gingival fibroblasts (PHGFs), but these differed substantially from the transcriptome elicited by the wild-type ATCC 33277 strain. Apparently, PPAD-modified fimbriae trigger the host cell response to P. gingivalis, as confirmed by showing that the proinflammatory host cell response mediated by TLR2 is dependent on PPAD activity and the presence of fimbriae, with type I fimbriae as the most potent TLR2 activators. We also found that PPAD-modified accessory fimbrial subunits (FimC, FimD, and FimE) alone or in combination are TLR2 ligands in a reporter cell line. Although FimA polymerization to form the fimbrial shaft was not required for TLR2 activation, the secretion and proteolytic maturation of FimA were necessary for signaling by accessory Fim proteins. This was supported by showing that the proinflammatory activation of PHGFs is dependent on PPAD and accessory fimbrial subunits. We conclude that accessory fimbrial subunits are modified by PPAD and stimulate the response to P. gingivalis infection in a TLR2-dependent manner.


Assuntos
Porphyromonas gingivalis , Receptor 2 Toll-Like , Humanos , Desiminases de Arginina em Proteínas/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fímbrias Bacterianas/metabolismo , Gengiva/microbiologia
4.
ISME J ; 17(9): 1430-1444, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37355741

RESUMO

Membrane vesicles are produced by Gram-negative and Gram-positive bacteria. While membrane vesicles are potent elicitors of eukaryotic cells and involved in cell-cell communication, information is scarce about their general biology in the context of community members and the environment. Streptococcus sanguinis, a Gram-positive oral commensal, is prevalent in the oral cavity and well-characterized for its ability to antagonize oral pathobionts. We have found that production and dissemination of membrane vesicles by S. sanguinis is dependent on environmental and community factors. Co-culture with interacting commensal Corynebacterium durum, as well as with the periodontal pathobiont Filifactor alocis had no effect on S. sanguinis vesicle number and size, whereas the periodontal pathobiont Porphyromonas gingivalis abolished S. sanguinis vesicle production. Using both correlation and differential expression analyses to examine the transcriptomic changes underlying vesicle production, we found that differential expression of genes encoding proteins related to the cytoplasmic membrane and peptidoglycan correlate with the abundance of membrane vesicles. Proteomic characterizations of the vesicle cargo identified a variety of proteins, including those predicted to influence host interactions or host immune responses. Cell culture studies of gingival epithelial cells demonstrated that both crude and highly purified membrane vesicles could induce the expression of IL-8, TNF-α, IL-1ß, and Gro-α within 6 hours of inoculation at levels comparable to whole cells. Our findings suggest that production of membrane vesicles by S. sanguinis is heavily influenced by community and environmental factors and plays an important role in communication with host cells.


Assuntos
Proteômica , Streptococcus sanguis , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Boca/microbiologia , Gengiva/microbiologia , Bactérias Gram-Positivas
5.
Crit Rev Microbiol ; 49(6): 726-738, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36260510

RESUMO

The microbial aetiology for periodontitis has been widely studied and deciphered for more than a century. The evolving and changing concepts about periodontal microbiology can be attributed to continuously developing laboratory techniques. The current sequencing platforms have not only expanded the catalog of periodontal pathogens but have also facilitated the understanding of functional interactions of the ecological framework. However, the translation of this new knowledge to advance periodontal therapeutics is minimal. We contend that novel clinical interventions directed beyond conventional therapies need to be emphasized. A clear understanding of the structural and functional dynamics of subgingival microbiota is a pre-requisite for developing any microbiome-based interventions for applications in periodontal health care. In this review, we discuss the 16 s-rRNA gene sequencing-based knowledge of the subgingival microbial community structure, its interactions and functions, and our perspective on the potential to engineer it for periodontal therapeutics. Harnessing this next-generation sequencing-based knowledge, microbiome modulation therapies are poised to change microbiome therapeutics' face.


Assuntos
Microbiota , Periodontite , Humanos , Gengiva/microbiologia , RNA Ribossômico 16S/genética , Periodontite/terapia , Periodontite/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala
6.
Front Cell Infect Microbiol ; 12: 1061125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530437

RESUMO

Periodontitis and diabetes mellitus (DM) have a bidirectional relationship. Periodontitis is initiated by dysbiosis of oral microorganisms, and in particular, the characteristics of the microorganisms that have penetrated the tissue are directly related to the disease; therefore, we investigated the effect of DM on intragingival microbial profiling of patients with periodontitis. A total of 39 subjects were recruited and divided into three groups in this case control study as follows: healthy (NA, 10), periodontitis only (PD, 18), and periodontitis with DM (PD_DM, 11). Gingival tissue was collected, DNA was extracted, and whole-genome sequencing was performed. PD and PD_DM showed different characteristics from NA in diversity and composition of the microbial community; however, no difference was found between the PD nad PD_DM. PD_DM showed discriminatory characteristics for PD in the network analysis. PD showed a network structure in which six species were connected, including three red complex species, and PD_DM's network was more closely connected and expanded, with six additional species added to the PD network. Although DM did not significantly affect α- and ß-diversity or abundance of phyla and genera of microbiota that invaded the gingival tissue of patients with periodontitis, DM will affect the progression of periodontitis by strengthening the bacterial network in the gingival tissue.


Assuntos
Diabetes Mellitus Tipo 2 , Microbiota , Periodontite , Humanos , Estudos de Casos e Controles , Periodontite/complicações , Periodontite/microbiologia , Gengiva/microbiologia
7.
Front Cell Infect Microbiol ; 12: 991128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339338

RESUMO

Background: To investigate human oral health and disease, models are required which represent the interactions between the oral mucosa and microbiome. Our aim was to develop an organotypic model which maintains viability of both host and microbes for an extended period of time. Methods: Reconstructed Human Gingiva (RHG) were cultured air-lifted with or without penicillin-streptomycin (PS) and topically exposed to Streptococcus gordonii (commensal) or Aggregatibacter actinomycetemcomitans (pathogen) for 72 hours in agar. RHG histology, viability and cytokines (ELISA), and bacterial viability (colony forming units) and location (FISH) were assessed. Results: The low concentration of topically applied agar did not influence RHG viability. Topically applied bacteria in agar remained localized and viable for 72 hours and did not spill over to infect RHG culture medium. PS in RHG culture medium killed topically applied bacteria. Co-culture with living bacteria did not influence RHG viability (Ki67 expression, MTT assay) or histology (epithelium differentiation, Keratin10 expression). RHG exposed to S. gordonii (with or without PS) did not influence low level of IL-6, IL-8, CCL2, CCL5, CCL20 or CXCL1 secretion. However, all cytokines increased (except CCL2) when RHG were co-cultured with A. actinomycetemcomitans. The effect was significantly more in the presence of living, rather than dead, A. actinomycetemcomitans. Both bacteria resulted in increased expression of RHG antimicrobial peptides (AMPs) Elafin and HBD-2, with S. gordonii exposure resulting in the most Elafin secretion. Conclusion: This technical advance enables living human oral host-microbe interactions to be investigated during a 72-hour period and shows differences in innate immunology triggered by S. gordonii and A. actinomycetemcomitans.


Assuntos
Elafina , Gengiva , Humanos , Gengiva/microbiologia , Ágar , Aggregatibacter actinomycetemcomitans , Citocinas
8.
Front Cell Infect Microbiol ; 12: 934298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189359

RESUMO

Objective: The aim of this study was to analyze the cultivable oral microbiota of patients with obstructive sleep apnea (OSA) and its association with the periodontal condition. Methods: The epidemiology profile of patients and their clinical oral characteristics were determined. The microbiota was collected from saliva, subgingival plaque, and gingival sulcus of 93 patients classified into four groups according to the periodontal and clinical diagnosis: Group 1 (n = 25), healthy patients; Group 2 (n = 17), patients with periodontitis and without OSA; Group 3 (n = 19), patients with OSA and without periodontitis; and Group 4 (n = 32), patients with periodontitis and OSA. Microbiological samples were cultured, classified, characterized macroscopically and microscopically, and identified by MALDI-TOF-MS. The distribution of complexes and categories of microorganisms and correlations were established for inter- and intra-group of patients and statistically evaluated using the Spearman r test (p-value <0.5) and a multidimensional grouping analysis. Result: There was no evidence between the severity of OSA and periodontitis (p = 0.2813). However, there is a relationship between the stage of periodontitis and OSA (p = 0.0157), with stage III periodontitis being the one with the highest presence in patients with severe OSA (prevalence of 75%; p = 0.0157), with more cases in men. The greatest distribution of the complexes and categories was found in oral samples of patients with periodontitis and OSA (Group 4 P-OSA); even Candida spp. were more prevalent in these patients. Periodontitis and OSA are associated with comorbidities and oral conditions, and the microorganisms of the orange and red complexes participate in this association. The formation of the dysbiotic biofilm was mainly related to the presence of these complexes in association with Candida spp. Conclusion: Periodontopathogenic bacteria of the orange complex, such as Prevotella melaninogenica, and the yeast Candida albicans, altered the cultivable oral microbiota of patients with periodontitis and OSA in terms of diversity, possibly increasing the severity of periodontal disease. The link between yeasts and periodontopathogenic bacteria could help explain why people with severe OSA have such a high risk of stage III periodontitis. Antimicrobial approaches for treating periodontitis in individuals with OSA could be investigated in vitro using polymicrobial biofilms, according to our findings.


Assuntos
Periodontite , Apneia Obstrutiva do Sono , Candida , Candida albicans , Causalidade , Gengiva/microbiologia , Humanos , Masculino , Periodontite/complicações , Periodontite/epidemiologia , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia
9.
Microb Pathog ; 171: 105724, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988883

RESUMO

Oral microbes coexist with each other in a symbiotic relationship or as commensals in healthy body. Teeth and oral cavity harbor diverse community of fungi and bacteria. This study focused on bacterial and fungal component of gingiva, where the last occupy little attention. In addition to study the antimicrobial activity of toothpastes, mouth washes and natural oils against microorganisms. Sixty swabs from outer surfaces of gingiva in healthy persons, as well as patients complaining of gingivitis and periodontitis were collected for fungal and bacterial analyses. Sensitivity of the isolated microorganisms to some pharmaceutical preparations and natural oils was also performed. Ten fungal and 9 bacterial species were identified. There is a highly significant variation in the frequency of Klebsiella pneumonia among healthy, gingivitis and periodontitis. Also, Candida tropicalis and cocci bacteria showed significant diversity among the three tested groups. Among pharmaceutical preparations (toothpastes and mouth washes) and natural oils, Paradontax, Hexitol and clove oil showed the best antimicrobial activity against tested fungal and bacterial strains. Although, minimum inhibition concentrations (MICs) of clove oil were high compared to Paradontax and Hexitol, nevertheless, it is highly recommended as both antifungal and antibacterial agent against oral pathogenic microorganisms, because it is a natural compound and nearly devoid of side effects.


Assuntos
Gengivite , Microbiota , Periodontite , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias , Óleo de Cravo/farmacologia , Gengiva/microbiologia , Gengivite/microbiologia , Humanos , Periodontite/microbiologia , Preparações Farmacêuticas , Óleos de Plantas , Álcoois Açúcares , Cremes Dentais
10.
Mol Oral Microbiol ; 37(3): 109-121, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35576119

RESUMO

Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.


Assuntos
Interleucina-8 , Interleucinas/imunologia , Macrófagos/imunologia , Porphyromonas gingivalis , Infecções por Bacteroidaceae/imunologia , Gengiva/imunologia , Gengiva/microbiologia , Doenças da Gengiva/imunologia , Humanos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Porphyromonas gingivalis/metabolismo
11.
Arch Oral Biol ; 140: 105466, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35640321

RESUMO

OBJECTIVE: Implication of human caspase-4 in periodontitis and in sensing periodontal pathogens by gingival epithelial cells (GECs) is unclear. This study aimed to determine caspase-4 and interleukin (IL)-18 expressions in gingival tissues affected with periodontitis and to investigate caspase-4 involvement in mediating innate immune responses in GECs. DESIGN: Ex vivo, caspase-4 and IL-18 expressions in gingival biopsies, obtained from healthy participants with periodontitis or clinically healthy gingiva (N = 20 each), were determined by immunohistochemistry. In vitro, caspase-4 activation in cultured GECs stimulated with Porphyromonas gingivalis or Fusobacterium nucleatum was analyzed by immunoblotting. mRNA expressions of human ß-defensin-2 (hBD-2), IL-8, and IL-18 in stimulated GECs in the presence or absence of a caspase-4 inhibitor were assayed by RT-qPCR. RESULTS: Ex vivo, compared with healthy gingival epithelium, the epithelium affected with periodontitis displayed a significant decrease in caspase-4 expression (P = 0.015), whereas IL-18 expression was significantly increased (P = 0.012). Moreover, the expression of caspase-4, but not IL-18, was found to be a predictor of periodontitis (P = 0.007). In vitro, caspase-4 was activated in cultured GECs challenged with P. gingivalis, but not F. nucleatum. mRNA upregulations of hBD-2, IL-8, and IL-18 upon P. gingivalis stimulation were significantly reduced when caspase-4 was inhibited (P < 0.05), whereas the inhibitor failed to suppress those inductions by F. nucleatum. CONCLUSIONS: Caspase-4 expression is diminished in the epithelium affected with periodontitis while that of IL-18 is enhanced. Caspase-4 activation in P. gingivalis-infected GECs upregulates the three innate immune effector molecules, suggesting a possible sensing mechanism of caspase-4 in GECs in periodontal disease pathogenesis.


Assuntos
Infecções por Bacteroidaceae , Caspases Iniciadoras , Gengiva , Periodontite , Porphyromonas gingivalis , Infecções por Bacteroidaceae/enzimologia , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Caspases Iniciadoras/biossíntese , Células Cultivadas , Epitélio/enzimologia , Epitélio/microbiologia , Epitélio/patologia , Gengiva/enzimologia , Gengiva/microbiologia , Gengiva/patologia , Humanos , Interleucina-18/biossíntese , Interleucina-8/biossíntese , Periodontite/enzimologia , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/metabolismo , RNA Mensageiro/metabolismo
12.
Comput Math Methods Med ; 2022: 4968016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265172

RESUMO

Objective: To study the preventive effect of Lactobacillus helveticus (L. helveticus) on periodontitis induced by Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in rats. Methods: Eighteen 8-week-old female rats were randomly divided into three groups: Sham group, Trehalose group, and L. helveticus SBT2171 (LH2171) group. We measured the distance of the cementoenamel junction-alveolar bone crest (CEJ-ABC) to evaluate alveolar bone resorption. Hematoxylin-eosin staining was used to observe the histopathological changes of rat hemimaxillary tissues. We detected the expression of ß-defensins, tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1ß, and IL-6 and the number of A. actinomycetemcomitans in rat gingival tissues by quantitative reverse transcriptase polymerase chain reaction. The levels of IL-1ß, IL-6, and TNF-α in rat gingival tissues were also measured by enzyme-linked immunosorbent assay. Results: Compared with the Trehalose group, the distance of CEJ-ABC was prominently reduced and alveolar bone resorption was notably improved in the LH2171 group. And the infiltration of inflammatory cells in the hemimaxillary tissue decreased obviously, periodontal fibers were arranged neatly, connective tissue small blood vessels proliferated, and the number of A. actinomycetemcomitans reduced significantly in the LH2171 group. In addition, the mRNA expression and release of inflammatory factors in the gingival tissues in the LH2171 group were notably lower than those in the Trehalose group. On the 21st and 36th day, the expression of ß-defensins in the gingival tissue of the LH2171 group increased significantly. Conclusion: L. helveticus improves alveolar bone resorption and increases the expression of ß-defensins thereby inhibiting the number of A. actinomycetemcomitans and thus prevents periodontitis.


Assuntos
Aggregatibacter actinomycetemcomitans/patogenicidade , Lactobacillus helveticus/fisiologia , Periodontite/prevenção & controle , beta-Defensinas/fisiologia , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/prevenção & controle , Animais , Biologia Computacional , Modelos Animais de Doenças , Feminino , Gengiva/microbiologia , Mediadores da Inflamação/metabolismo , Periodontite/microbiologia , Periodontite/fisiopatologia , Probióticos/farmacologia , Ratos , Ratos Sprague-Dawley , Trealose/farmacologia
13.
Int J Biochem Cell Biol ; 145: 106194, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276370

RESUMO

Unlike other non-lymphoid tissues monocytes comprise a large proportion of mononuclear phagocytes present within the gingiva. Their functions and fate remain poorly understood. The oral mucosa faces challenges common to all barrier surfaces, including constant exposure to antigens and the resident commensal bacteria, but also experiences ongoing mechanical damage from mastication. Gingiva monocytes may therefore possess both myeloid functions observed at other barrier sites, such as hypo-responsiveness to bacterial stimulation, and distinctive functions tailored by their unique environment. In this review, we discuss the establishment and function of monocytes and macrophages at several mucosal tissues, and posit potential functions of monocytes within the gingiva tissue.


Assuntos
Gengiva , Monócitos , Bactérias , Gengiva/microbiologia , Macrófagos
14.
Clin Oral Investig ; 26(3): 2209-2221, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35122548

RESUMO

OBJECTIVE: The aim of this study was to systematically update the evidence for associations between host genetic variants and subgingival microbial detection and counts. MATERIALS AND METHODS: Following a previous systematic review (Nibali et al. J Clin Periodontol 43(11): 889-900, 15), an update of a systematic search of the literature was conducted in Ovid Medline, Embase, LILACS, and Cochrane Library for studies reporting data on host genetic variants and detection of microbes subgingivally published in the last 6 years. RESULTS: A total of 19 studies were included in the review, from an initial search of 2797 titles. Studies consisted mainly of candidate gene studies and of one genome-wide analysis. A total of 62 studies were considered for summary findings, including 43 identified in the previous systematic review of studies published up to 2015. Meta-analyses were done when appropriate including both papers in the original review and in the update. Meta-analyses revealed lack of associations between IL1 composite genotype and subgingival detection of Aggregatibacter acinomycetemcomitans, Poprhyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Prevotella intermedia. Promising evidence is emerging from other genetic variants and from sub-analyses of data from genome-association studies. Among other studies with candidate-gene, target SNPs were mainly within the IL10, IL6, IL4, IL8, IL17A, and VDR gene. CONCLUSIONS: IL1 composite genotype does not seem to be associated with subgingival microbial detection. Promising associations should be pursued by future studies, including studies employing -OMICS technologies. CLINICAL RELEVANCE: A better knowledge of which host genetic variant predispose to subgingival microbial colonization and to the development of progression of periodontal disease could potentially help to better understand periodontal disease pathogenesis and help with its management.


Assuntos
Gengiva , Bactérias Gram-Negativas , Genótipo , Gengiva/microbiologia , Bactérias Gram-Negativas/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Interleucina-1/genética
15.
Sci Rep ; 12(1): 2643, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173205

RESUMO

Limited research exists on carbohydrate intake and oral microbiome diversity and composition assessed with next-generation sequencing. We aimed to better understand the association between habitual carbohydrate intake and the oral microbiome, as the oral microbiome has been associated with caries, periodontal disease, and systemic diseases. We investigated if total carbohydrates, starch, monosaccharides, disaccharides, fiber, or glycemic load (GL) were associated with the diversity and composition of oral bacteria in subgingival plaque samples of 1204 post-menopausal women. Carbohydrate intake and GL were assessed from a food frequency questionnaire, and adjusted for energy intake. The V3-V4 region of the 16S rRNA gene from subgingival plaque samples were sequenced to identify the relative abundance of microbiome compositional data expressed as operational taxonomic units (OTUs). The abundance of OTUs were centered log(2)-ratio transformed to account for the compositional data structure. Associations between carbohydrate/GL intake and microbiome alpha-diversity measures were examined using linear regression. PERMANOVA analyses were conducted to examine microbiome beta-diversity measures across quartiles of carbohydrate/GL intake. Associations between intake of carbohydrates and GL and the abundance of the 245 identified OTUs were examined by using linear regression. Total carbohydrates, GL, starch, lactose, and sucrose intake were inversely associated with alpha-diversity measures. Beta-diversity across quartiles of total carbohydrates, fiber, GL, sucrose, and galactose, were all statistically significant (p for PERMANOVA p < 0.05). Positive associations were observed between total carbohydrates, GL, sucrose and Streptococcus mutans; GL and both Sphingomonas HOT 006 and Scardovia wiggsiae; and sucrose and Streptococcus lactarius. A negative association was observed between lactose and Aggregatibacter segnis, and between sucrose and both TM7_[G-1] HOT 346 and Leptotrichia HOT 223. Intake of total carbohydrate, GL, and sucrose were inversely associated with subgingival bacteria alpha-diversity, the microbial beta-diversity varied by their intake, and they were associated with the relative abundance of specific OTUs. Higher intake of sucrose, or high GL foods, may influence poor oral health outcomes (and perhaps systemic health outcomes) in older women via their influence on the oral microbiome.


Assuntos
Placa Dentária/microbiologia , Carboidratos da Dieta/efeitos adversos , Ingestão de Alimentos/fisiologia , Gengiva/microbiologia , Microbiota , Pós-Menopausa , Idoso , Idoso de 80 Anos ou mais , Biodiversidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota/genética , Pessoa de Meia-Idade , Saúde Bucal , Estudos Prospectivos
16.
Sci Rep ; 12(1): 2861, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190583

RESUMO

This study aimed to assess the effect of smoking different tobacco types on the supragingival microbiome and its relation to dental caries. Forty supragingival plaque samples were collected from smokers of a single tobacco type and non-smokers seeking treatment at the University Dental Hospital Sharjah, UAE. DMFT (decayed, missing and filled teeth) was determined for all participants who were divided into two groups: no-low caries (NC-LC: DMFT = 0-4; n = 18) and moderate-high caries (MC-HC: DMFT = 5-20; n = 22). 16S rRNA gene was sequenced using third-generation sequencing with Nanopore technology. Microbiome composition and diversity were compared. Caries was most common among cigarette smokers. Supragingival microbiota were significantly altered among smokers of different tobacco types. In cigarette smokers, cariogenic bacteria from genus Streptococcus (including S. mutans) were significantly more among subjects with NC-LC, while Lactobacilli (including L. fermentum) were more among subjects with MC-HC. In medwakh smokers, several periodontopathogens were significantly elevated in subjects with NC-LC, while other pathogenic bacteria (as Klebsiella pneumoniae) were more in those with MC-HC. Cigarette and alternative tobacco smoking had a significant impact on the supragingival microbiome. Indeed, further studies are required to unravel the consequences of oral dysbiosis triggered by smoking. This could pave the way for microbiota-based interventional measures for restoring a healthy oral microbiome which could be a promising strategy to prevent dental caries.


Assuntos
Cárie Dentária/etiologia , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Gengiva/microbiologia , Microbiota , /classificação , Fumar/efeitos adversos , Adolescente , Adulto , Cárie Dentária/prevenção & controle , Disbiose/etiologia , Disbiose/microbiologia , Feminino , Humanos , Lactobacillus , Masculino , Pessoa de Meia-Idade , Streptococcus , Produtos do Tabaco/efeitos adversos , Adulto Jovem
17.
Med Sci Monit ; 28: e932191, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34983919

RESUMO

BACKGROUND This study aimed to compare the effectiveness of subgingival scaling and root planing with the Twinlight laser, Er: YAG laser, and hand instrumentation on the removal of endotoxin and attachment of human gingival fibroblasts (HGFs) to cementum surfaces in vitro. MATERIAL AND METHODS Single-rooted teeth extracted for periodontal disease were collected and divided into 3 groups: group A, root planing with Gracey curet no. 5/6; group B, irradiation with Er: YAG laser; group C, irradiation with Er: YAG laser and Nd: YAG laser. Endotoxins were determined by the limulus amebocyte lysate test. Cell attachment and proliferation of HGFs on root specimens were evaluated by cell counting kit-8 assay. The root surface and cell morphology were observed by scanning electron microscope. RESULTS A flat root surface with scratches was found in group A, Group B had a homogeneous rough morphology without carbonization, and group C had a non-homogeneous rough morphology with ablation. The endotoxin concentration was highest in group A (P<0.05) and lowest in group C (P>0.05). HGFs cultured in group B showed significantly increased adhesion and proliferation compared with groups A and C (P<0.05). HGFs in group B were well attached, covered densely by pseudopodia. HGFs in group A were round with poor extension and short pseudopodia, while the cells in the group C were in narrow, triangular, or polygonal shapes. CONCLUSIONS Twinlight laser-assisted periodontal treatment effectively improved the biocompatibility of root surface and promoted the attachment and proliferation of fibroblasts by removing calculus and reducing the concentration of endotoxins.


Assuntos
Fibroblastos/fisiologia , Gengiva , Terapia a Laser , Lasers de Estado Sólido/uso terapêutico , Doenças Periodontais , Aplainamento Radicular/métodos , Adesão Celular , Gengiva/microbiologia , Gengiva/patologia , Humanos , Terapia a Laser/instrumentação , Terapia a Laser/métodos , Microscopia Eletrônica de Varredura/métodos , Doenças Periodontais/microbiologia , Doenças Periodontais/fisiopatologia , Doenças Periodontais/terapia , Propriedades de Superfície
18.
Orthod Craniofac Res ; 25(2): 260-268, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34538018

RESUMO

BACKGROUND: Full-fixed appliance orthodontic treatment (commonly called braces) increases plaque accumulation and the risk of gingivitis and periodontitis. However, little consensus exists on changes to subgingival microbiota and specific periodontopathogens during treatment with braces. Prior studies have been hampered by selection biases due to dependence on culture conditions, candidate-based PCR and shallow sequencing methods. OBJECTIVE: The objective was to provide the first longitudinal, culture-free and deep-sequence profiling of subgingival bacteria in subjects during early stages of full-fixed orthodontic treatment. METHODS: We performed 16S rRNA next-generation sequencing (NGS) on 168 subgingival samples collected at 4 distinct mandibular tooth sites per subject before (0 weeks) and during (6 and 12 weeks) orthodontic intervention in 9 experimental and 5 control subjects not undergoing treatment. RESULTS: Overall, we noted that orthodontic intervention led to increased microbial richness, accompanied by an increased incidence of localized gingivitis/mild periodontitis in subjects requiring orthodontic treatment compared to controls, as well as significant baseline variations in subgingival microbiomes in all subjects. Moreover, we confirmed individual- and site-dependent microbiome variability (in particular, the lingual site harboured higher microbiome diversity than buccal sites) that orthodontic bands may lead to more prolonged shifts in microbial changes compared to brackets, and evidence of adaptive enrichment of consensus bacteria with orthodontic intervention (12 novel, consensus bacterial species were identified). CONCLUSION: Our study, along with evolving global profiling methods and data analyses, builds a strong foundation for further analyses of subgingival microbiomes during full-fixed orthodontic treatment.


Assuntos
Gengivite , Microbiota , Periodontite , Bactérias/genética , Gengiva/microbiologia , Humanos , Aparelhos Ortodônticos Fixos , Estudos Prospectivos , RNA Ribossômico 16S/genética
19.
Sci Rep ; 11(1): 23987, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907334

RESUMO

The subgingival microbiome is one of the most stable microbial ecosystems in the human body. Alterations in the subgingival microbiome have been associated with periodontal disease, but their variations over time and between different subgingival sites in periodontally healthy individuals have not been well described. We performed extensive, longitudinal sampling of the subgingival microbiome from five periodontally healthy individuals to define baseline spatial and temporal variations. A total of 251 subgingival samples from 5 subjects were collected over 6-12 months and deep sequenced. The overall microbial diversity and composition differed significantly between individuals. Within each individual, we observed considerable differences in microbiome composition between different subgingival sites. However, for a given site, the microbiome was remarkably stable over time, and this stability was associated with increased microbial diversity but was inversely correlated with the enrichment of putative periodontal pathogens. In contrast to microbiome composition, the predicted functional metagenome was similar across space and time, suggesting that periodontal health is associated with shared gene functions encoded by different microbiome consortia that are individualized. To our knowledge, this is one of the most detailed longitudinal analysis of the healthy subgingival microbiome to date that examined the longitudinal variability of different subgingival sites within individuals. These results suggest that a single measurement of the healthy subgingival microbiome at a given site can provide long term information of the microbial composition and functional potential, but sampling of each site is necessary to define the composition and community structure at individual subgingival sites.


Assuntos
Gengiva/microbiologia , Metagenoma , Microbiota/genética , Adulto , Feminino , Humanos , Masculino
20.
Front Immunol ; 12: 774273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899728

RESUMO

Failure to attenuate inflammation coupled with consequent microbiota changes drives the development of bone-destructive periodontitis. Quercetin, a plant-derived polyphenolic flavonoid, has been linked with health benefits in both humans and animals. Using a systematic approach, we investigated the effect of orally delivered Quercetin on host inflammatory response, oral microbial composition and periodontal disease phenotype. In vivo, quercetin supplementation diminished gingival cytokine expression, inflammatory cell infiltrate and alveolar bone loss. Microbiome analyses revealed a healthier oral microbial composition in Quercetin-treated versus vehicle-treated group characterized by reduction in the number of pathogenic species including Enterococcus, Neisseria and Pseudomonas and increase in the number of non-pathogenic Streptococcus sp. and bacterial diversity. In vitro, Quercetin diminished inflammatory cytokine production through modulating NF-κB:A20 axis in human macrophages following challenge with oral bacteria and TLR agonists. Collectively, our findings reveal that Quercetin supplement instigates a balanced periodontal tissue homeostasis through limiting inflammation and fostering an oral cavity microenvironment conducive of symbiotic microbiota associated with health. This proof of concept study provides key evidence for translational studies to improve overall health.


Assuntos
Anti-Inflamatórios/farmacologia , Disbiose/tratamento farmacológico , Microbiota/efeitos dos fármacos , Boca/efeitos dos fármacos , Boca/microbiologia , Quercetina/farmacologia , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/etiologia , Animais , Antioxidantes/farmacologia , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Gengiva/efeitos dos fármacos , Gengiva/microbiologia , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Macrófagos , Masculino , Camundongos , Modelos Animais , Modelos Biológicos , Doenças Periodontais/tratamento farmacológico , Doenças Periodontais/etiologia , Doenças Periodontais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...